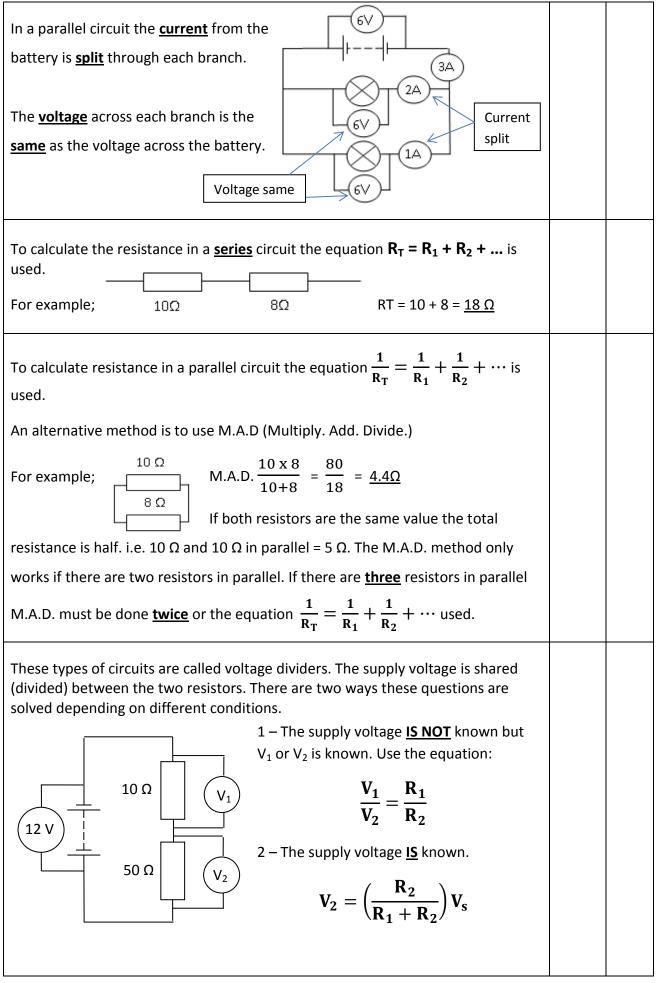
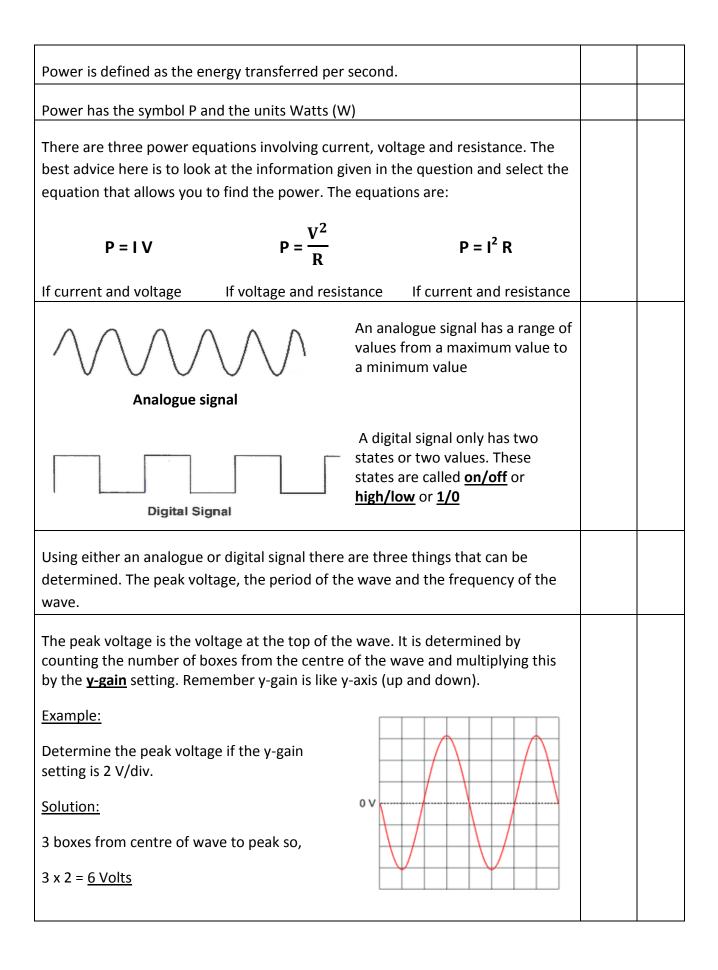
Practical Electronics

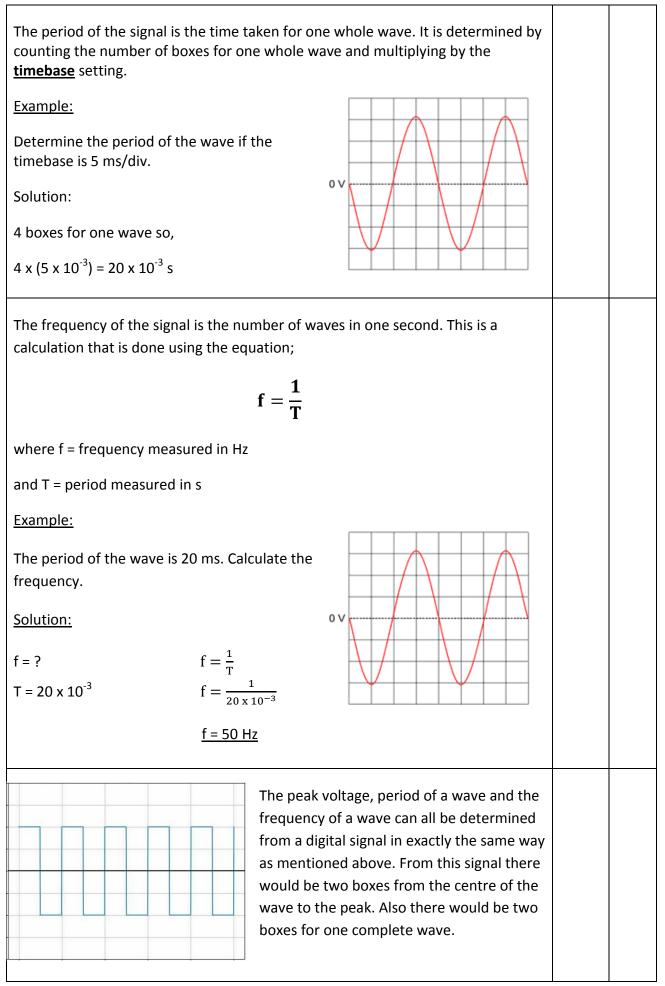
Contents

Page number	<u>Topic</u>
2 - 7	Section 1 – Circuit Theory
8 - 11	Section 2 – Circuit Simulation and Design
12 - 15	Section 3 – Circuit Construction

In the next few pages there will be tables with knowledge that <u>must</u> be learned before the National 5 Electronics exam. In the 1st box put a \checkmark or \checkmark to show your understanding. You can use the 2nd box to check your understanding at a later date.

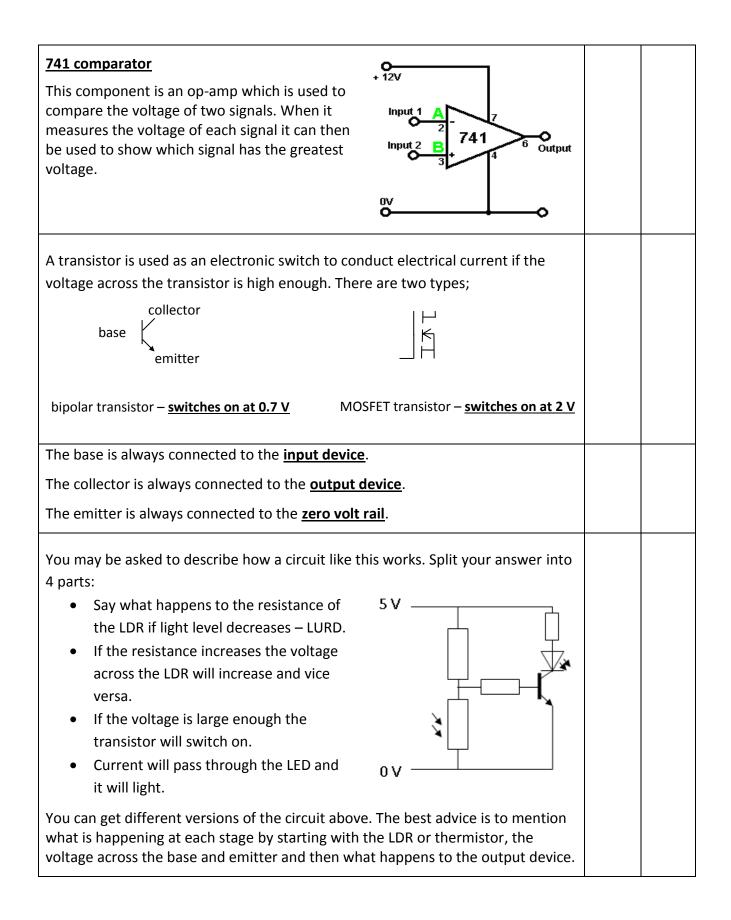

Using this sheet **<u>will</u>** help you become more prepared for your final exam.


Use the extra space sections to include any additional information that you find when doing past paper questions/reading your notes etc...


Section 1 – Circuit Theory

	ple a current of 20 mA. The prefix here is the symbol nt is not 20 A but instead 20 x 10 ⁻³ A. If you do not	
•	' then you will <u>not</u> be awarded full marks in each	
question you do this in.		
The prefixes are;		
Prefix (symbol)	power of 10 (x 10 to)	
Mega (M)	x 10 ⁶	
Kilo (K)	x 10 ³	
milli (m)	x 10 ⁻³	
micro (μ)	x 10- ⁶	
nano (n)	x 10 ⁻⁹	
pico (p)	x 10 ⁻¹²	
ncreases in a circuit the curr current will increase.	The opposition to current in a circuit. If the resistance ent will decrease. If the resistance decreases the ation; $\mathbf{V} = \mathbf{I} \mathbf{R}$ where V = voltage (V), I = current (A)	
Voltage is measured using a	voltmeter. The circuit symbol for a voltmeter is \bigtriangledown	
A voltmeter must be connect component as shown.	ed <u>across</u> a	
The voltage is always <u>across</u> and <u>never</u> flows through a co		

Current is measured	using an ammeter. The circuit	symbol for an ammeter is A					
It must be connected <u>in series</u> with a							
component as show	n.						
The current always <u>f</u>	lows through a	(A)					
component							
and <u>never</u> across a c	omponent.						
Resistance is measur	red using an ohmmeter. The ci	rcuit symbol for an ohmmeter					
is (Ω) The resistar	nce is measured by						
connecting an ohmn	neter as shown.	Ω					
		\bigcirc					
The following symbo	ols represent components that						
Cell –	Battery – – – – – – – – – – – – – – – – – – –	– Fuse – –					
	' '						
Lamp – – 🔿	⊢ Switch –	Resistor – – – – –					
Variable							
resistor –	- a.c. supply $ 0$ $$ c						
There are two types	of circuit called series and par	allel There are rules which					
must be used for eac		uner. mere are raies which					
	<u>Current</u>	<u>Voltage</u>					
Series circuit	same everywhere	split across components					
Parallel circuit	split through branches	same in each branch					
]					
In a series circuit the	e <u>current</u> is the <u>same size</u>	[(5 v)]					
at any point in the ci							
	Current same						
The voltage across th		TYTYT					
The <u>voltage</u> across the battery is split across each of the components in							
the circuit.							
		Voltage split					



A capacitor is used to store charge. If the capacitance of the capacitor is greater then the capacitor will store more charge. A capacitor with greater capacitance will decrease the flash rate of an LED. The flash rate can be increased by decreasing the capacitance of the capacitor.	
Another way to change the flash rate is to change the resistance in the circuit. A resistor of greater resistance will decrease the flash rate and a resistor of smaller resistance will increase the flash rate.	
When a current flows in a conductor (a wire) then a magnetic field is produced around the wire. The greater the current the greater the strength of the magnetic field.	
The magnetic field can be made even stronger by coiling (wrapping around) the wire around a conductor.	
A device which uses and electrical current to produce a magnetic field is called an electromechanical device.	
Extra space for additional information	

Section 2 – Circuit Simulation and Design

 Simulations are used in circuit des To see if the circuit works To improve the circuit desi Can be changed easily to the Can test smaller sub-system 						
Every electronic system has three	main parts:	Input, proces	s and output			
Logic gates are used to allow an in digital process devices (only have		o affect an ou	utput device.	They are		
<u>NOT gate</u> – The output is <u>NOT</u> the	same as the	input.				
	Input 0 1	r (Dutput 1 0			
OR gate – The output is a 1 if inpu	t A <u>OR</u> input	B are a 1.				
AND gate – The output is a 1 only	· <u> </u>		i _			
	Input A	Input B	Output			
	o	1	0			
	1	o	Ō			
	1	1	1			
NOR gate – This gate works in the opposite way from an OR gate						
	Input A Input B Output					
	0	0	1			
			0			
		1	0			
		- I	0	J		

				_				
NAND gat	<u>e</u> – This:	gate wo	rks in the	<u>opposite</u> v	way from an A	AND gate.		
			I	Input A	Input B	Output	1	
				0	0	1		
)0—		õ	1	1		
				1	1			
				1	U			
			L	1	1	0		
	_	-		tput of 1 <u>O</u> In exclusive		A or input B a	re a 1	
			Γ	Input A	Input B	Output	1	
77				0	0	o		
		\geq		0	1	1		
//		/		1	0			
12				1	1			
			L	1	1	0	J	
Ind Ha nc an Before co	correct r aving cor ot facing id the wo	resistor v mponent the nega ord <u>orier</u> ng a circu	alues wh is connec ative term ntation m uit you sh	ted the wro ninal). This oust be used ould comp	re too high or ong way (a dio is called <u>com</u> d.	too low. ode or LED wl ponent orien rer up checkli	tation	
• ch	ecking t	he comp	onents ai	re connecte	ed the correct	t way (correct	t	
or	<u>ientatio</u>	<u>n</u>)						
• Ch	ecking t	he suppl	y voltage	is appropr	iate.			
• Ch	ecking t	he resist	or values	are approp	oriate.			
Half-adde This circui logic gate used.	it is usec	l to add ı	-	-	В		Sum 0 Carry 0	
Inp	ut	Ou	tput					
A	B	Sum	Carry					
0	0	0	0			n only be a 1		
0	1	1	0	4		ssible output	s as	
1	0	1	0	shown ir	n the truth tal	ble.		
1	1	0	1					

A 555 timer is used to send a regular signal to an output device. It could be used to make an LED light flash on and off. The symbol shows the location of each pin.	
1. Connected to 0 V rail. supply +Vs reset	
2. Connected to the capacitor.	
3. Is connected to the output device (LED). threshold 6 555 timer 3 output	
4. Connected to the positive voltage rail. trigger 2 1 5	
5. Not connected to anything. supply 0V control	
6. Connected to the capacitor.	
7. Connected back into the input part (usually a resistor).	
8. Connected to the positive voltage rail.	
Extra space for additional information	

Section 3 – Circuit Construction

Resistors have different values which can range from a few ohms (Ω) to Millions of ohms (Ω). Prefixes kilo (k) and Mega (M) are often used with resistors. BS notation or R notation is used to identify the resistance of a resistor. If the resistance is less than 1 thousand ohms it is written as: 270 Ω would be 2708. 560 Ω would be 5608. If the resistance is between 1 thousand and 1 million ohms it is written as: 270 Ω would be 277. 5600 Ω would be 5608. If the resistance greater than 1 million ohms it is written as: 200000 Ω would be 3M. 560000 Ω would be 5M6 The resistance of a resistor is found using a colour code (although the image will be in black and white!). Looking at the colours starting from the left the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance. Vou will be <u>300000 Ω would be 5608. If the resistance of a resistor is found using a colour code (although the image will be in black and white!). Looking at the colours starting from the left the first and second colour are the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance of a resistor is found using a 1 ± 10 ± 1% Event 1 ± 10 ± 1% Black 0 0 ± 1 Voluet 7 Predov 1 ± 10000 ± 2% Violet 7 Reed 2 ± 2 Si</u>								
If the resistance is less than 1 thousand ohms it is written as; 270 Ω would be 270R. 560 Ω would be 560R. If the resistance is between 1 thousand and 1 million ohms it is written as; 2700 Ω would be 2k7. 56000 Ω would be 56k. If the resistance greater than 1 million ohms it is written as; 300000 Ω would be 3M. 560000 Ω would be 5M6 The resistance of a resistor is found using a colour code (although the image will be in black and whitel). Looking at the colours starting from the left the first and second colour are the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance. Volume If the resistance of a resistor is found will be in black and whitel). Looking at the colours starting from the left the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance. Volume If the resistance $\frac{1}{value}$	2							
$\frac{270 \Omega \text{ would be 2708. 560 }\Omega \text{ would be 5608.}}{\text{If the resistance is between 1 thousand and 1 million ohms it is written as;}}{2700 \Omega \text{ would be 27. 56000 }\Omega \text{ would be 56k.}}{\text{If the resistance greater than 1 million ohms it is written as;}}{300000 \Omega \text{ would be 3M. 5600000 }\Omega \text{ would be 5M6}}}$ The resistance of a resistor is found using a colour code (although the image will be in black and white). Looking at the colours starting from the left the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance. $\frac{-band \text{ Resistor}}{Voluet} \frac{Voluet}{Voluet} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Volue}{Volue} \frac{Voluet}{Volue} \frac{Volue}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Volue}{Volue} \frac{Voluet}{Volue} \frac{Volue}{Volue} Volu$	BS not	ation or R no	tation is used	l to identify	the resistance	of a resistor.		
$270 \Omega \text{ would be 270R. } 560 \Omega \text{ would be 560R.}$ If the resistance is between 1 thousand and 1 million ohms it is written as: 2700 \Omega would be 2k7. 56000Ω would be 56k. If the resistance greater than 1 million ohms it is written as: 3000000 \Omega would be 3M. 5600000Ω would be 5M6 The resistance of a resistor is found using a colour code (although the image will be in black and white). Looking at the colours starting from the left the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third scolar is a multiplier. The fourth colour is the tolerance of the resistance and the third scolar is a multiplier. The fourth colour is the tolerance of the resistance and the third scolar is a multiplier. The fourth colour is the tolerance of the resistance. $\frac{-band \text{ Resistor}}{Voluet} \frac{Voluet}{Voluet} \frac{Voluet}{Voluet} \frac{Voluet}{Voluet} \frac{Voluet}{Voluet} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Voluet}{Volue} \frac{Volue}{Volue} \frac{Volue}{Vol$	If the r	esistance is l	ess than 1 th	ousand ohm	is it is written a	as;		
2700 Ω would be 2k7. 56000 Ω would be 56k. If the resistance greater than 1 million ohms it is written as: 300000 Ω would be 3M. 560000 Ω would be 5M6 The resistance of a resistor is found using a colour code (although the image will be in black and white!). Looking at the colours starting from the left the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is a multiplier to the resistance and the third colour is a multiplier. The fourth colour is a multiplier is a many exam. 								
2700 Ω would be 2k7. 56000 Ω would be 56k. If the resistance greater than 1 million ohms it is written as: 300000 Ω would be 3M. 560000 Ω would be 5M6 The resistance of a resistor is found using a colour code (although the image will be in black and white!). Looking at the colours starting from the left the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is a multiplier. The fourth colour is the tolerance of the resistance and the third colour is a multiplier. The fourth colour is a multiplier to the resistance and the third colour is a multiplier. The fourth colour is a multiplier is a many exam. 	If the r	esistance is k	between 1 th	ousand and	1 million ohms	s it is written	as;	
If the resistance greater than 1 million ohms it is written as: 300000 Ω would be 3M. 5600000 Ω would be 5M6 The resistance of a resistor is found using a colour code (although the image will be in black and white!). Looking at the colours starting from the left the first and second colour are the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance. You will be given this table in any exam. Out of the tolerance of the resistance and the third colour is the tolerance of the resistance. You will be given this table in any exam. Out of the tolerance of the resistance and the third colour is the tolerance of the resistance. Out of the tolerance of the resistance and the third colour is the tolerance of the resistance. Out of the tolerance of the resistance. You will be given this table in any exam. Out of the tolerance of the resistance and the third colour is the tolerance of the resistance and the third colour is the tolerance of the resistance and the tolerance to the resistance and the tolerance to the resistance and the tolerance to the resistance to the resistance to the resistance and the tolerance to the resistance t								
300000 Ω would be 3M. 560000 Ω would be 5M6 The resistance of a resistor is found using a colour code (although the image will be in black and white!). Looking at the colours starting from the left the first and second colour are the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance.								
The resistance of a resistor is found using a colour code (although the image will be in black and white!). Looking at the colours starting from the left the first and second colour are the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u>)</u>		
be in black and white!). Looking at the colours starting from the left the first and second colour are the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance. $\begin{array}{c} +band \text{ Resistor} \\ \hline \\ & \\ & \\ \hline \\ & \\ & \\ \hline \\ & \\ & \\ \hline \\ & \\ &$	300000	00 Ω would b	e 3M. 5600	000 Ω woul	d be 5M6			
second colour are the first and second value of the resistance and the third colour is a multiplier. The fourth colour is the tolerance of the resistance.	The res	sistance of a	resistor is fou	und using a c	colour code (al	though the ir	mage will	
colour is a multiplier. The fourth colour is the tolerance of the resistance. $\begin{array}{c} +band \operatorname{Resistor} \\ \hline You will be given this table in any exam. \\ \hline \\ $					-			
$\begin{array}{c} $	second	l colour are t	he first and s	econd value	of the resistar	nce and the t	hird	
$\begin{tabular}{ c c c c } \hline You will be given this table in any exam. \\ \hline \hline Colour & 1st band & 2nd band & Multiplier & Tolerances \\ \hline \hline Black & 0 & 0 & 1 & 1 \\ \hline \hline Black & 0 & 0 & 1 & 1 & 10 & \pm 1\% \\ \hline \hline Red & 2 & 2 & 2 & \times 100 & \pm 2\% \\ \hline \hline Orange & 3 & 3 & \times 1000 & \pm 3\% \\ \hline Yellow & 4 & 4 & 4 & \times 10000 & \pm 0.5\% \\ \hline Blue & 6 & 6 & 6 & \times 1000000 & \pm 0.5\% \\ \hline Blue & 6 & 6 & 6 & \times 10000000 & \pm 0.05\% \\ \hline \hline Violet & 7 & 7 & \times 100000000 & \pm 0.05\% \\ \hline \hline Violet & 7 & 7 & \times 100000000 & \pm 0.05\% \\ \hline \hline Violet & 7 & 7 & \times 100000000 & \pm 0.05\% \\ \hline \hline Violet & 9 & 9 & \times 100000000 & \pm 0.05\% \\ \hline \hline Violet & 7 & 0 & \times 0.01 & \pm 10\% \\ \hline Silver & & 0.01 & \pm 10\% \\ \hline Silver & & 0.01 & \pm 10\% \\ \hline No band & & & & & & & & & & & & & & & & & & &$	colour	is a multiplie	er. The fourth	colour is the	e tolerance of	the resistanc	e.	
$\label{eq:result} \begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $				4-band Resisto	r	Ver	will be	
table in any exam.table in any exam. \overline{Colour} 1st band valueMultiplier valueTolerancesBlack00× 1Brown11× 1011× 10± 1%Red22× 10022× 100± 2%Orange33× 1000Green55× 1000000Blue66× 1000000Grey88× 10000000Gold× 0.1± 5%Silver1± 0.01type9× 100000000Gold× 0.1± 20%This resistance would be;10 × 100 = 1000 Ω with a tolerance ± 5% $R = 1000 \Omega \pm 5\%$								
exam. $ \frac{Colour}{value} \frac{1st band}{value} \frac{2nd band}{value} \frac{Multiplier}{value} Tolerances} $ Black 0 0 × 1 Brown 1 1 × 10 ± 1% Red 2 2 × 100 ± 2% Orange 3 3 × 1000 ± 3% Yellow 4 4 × 10000 ± 4% Green 5 5 × 1000000 ± 0.25% Violet 7 7 × 10000000 ± 0.25% White 9 9 × 100000000 ± 0.05% Silver 1 ± 0.01 ± 1% ± 20% No band 1 ± 100 1 0.02% ± 20%		_	=					
Colour 1st band value 2nd band value Multiplier Tolerances Black 0 0 × 1 Brown 1 1 × 10 ± 1% Red 2 2 × 100 ± 2% Orange 3 3 × 1000 ± 3% Yellow 4 4 × 10000 ± 4% Green 5 5 × 1000000 ± 0.25% Violet 7 7 × 10000000 ± 0.25% Violet 7 7 × 10000000 ± 0.05% Blue 6 6 × 100000000 ± 0.05% White 9 9 × 100000000 ± 0.05% White 9 9 × 100000000 ± 0.05% Silver × 0.01 ± 10% ± 20% No band ± 20% This resistance would be; 10 × 100 = 1000 Ω with a tolerance ± 5% R = 1000 Ω ± 5% E ± 000 Ω ± 5% E								
Cool value value <th< td=""><td></td><td></td><td></td><td></td><td></td><td>exa</td><td></td><td></td></th<>						exa		
Cool value value value value value value value Black 0 0 × 1								
Cool value value <th< td=""><td></td><td></td><td>/</td><td>\ 2</td><td></td><td></td><td></td><td></td></th<>			/	\ 2				
Brown 1 1 × 10 ± 1% Red 2 2 × 100 ± 2% Orange 3 3 × 1000 ± 3% Yellow 4 4 × 10000 ± 4% Green 5 5 × 100000 ± 0.5% Blue 6 6 × 1000000 ± 0.2% Violet 7 7 × 1000000 ± 0.2% White 9 9 × 10000000 ± 0.05% White 9 9 × 100000000 ± 0.05% Silver × 0.01 ± 1% ± 20% This resistance would be; No band ± 0.00 Ω with a tolerance ± 5% R = 1000 Ω ± 5%		Colour			Multiplier	Tolerances		
Red 2 2 × 100 $\pm 2\%$ Orange 3 3 × 1000 $\pm 3\%$ Yellow 4 4 × 10000 $\pm 4\%$ Green 5 5 × 100000 $\pm 0.5\%$ Blue 6 6 × 1000000 $\pm 0.5\%$ Violet 7 7 × 10000000 $\pm 0.05\%$ White 9 9 × 100000000 $\pm 0.05\%$ Gold × 0.01 $\pm 10\%$ silver × 0.01 $\pm 10\%$ No band × 100 = 1000 \Omega with a tolerance $\pm 5\%$ $R = 1000 \Omega \pm 5\%$ $R = 1000 \Omega \pm 5\%$								
$ \begin{array}{ c c c c c c c c } \hline Orange & 3 & 3 & \times 1000 & \pm 3\% \\ \hline Yellow & 4 & 4 & \times 10000 & \pm 4\% \\ \hline Green & 5 & 5 & \times 100000 & \pm 0.5\% \\ \hline Blue & 6 & 6 & \times 1000000 & \pm 0.25\% \\ \hline Violet & 7 & 7 & \times 10000000 & \pm 0.05\% \\ \hline Violet & 9 & 9 & \times 100000000 & \\ \hline Gold & & \times 0.1 & \pm 5\% \\ \hline Silver & & \times 0.01 & \pm 10\% \\ \hline No band & & & & & & \\ \hline This resistance would be; \\ 10 \times 100 = 1000 \ \Omega \text{ with a tolerance } \pm 5\% \\ \hline R = 1000 \ \Omega \pm 5\% \\ \hline \end{array} $			-					
Yellow 4 4 × 10000 $\pm 4\%$ Green 5 5 × 100000 $\pm 0.5\%$ Blue 6 6 × 1000000 $\pm 0.25\%$ Violet 7 7 × 10000000 $\pm 0.05\%$ Grey 8 8 × 10000000 $\pm 0.05\%$ White 9 9 × 100000000 $\pm 0.05\%$ White 9 9 × 100000000 $\pm 0.05\%$ Silver × 0.01 $\pm 10\%$ $\pm 20\%$ This resistance would be; 10 × 100 = 1000 Ω with a tolerance $\pm 5\%$ $R = 1000 Ω \pm 5\%$								
Green 5 5 × 100000 $\pm 0.5\%$ Blue 6 6 × 1000000 $\pm 0.25\%$ Violet 7 7 × 1000000 $\pm 0.05\%$ Grey 8 8 × 10000000 $\pm 0.05\%$ White 9 9 × 100000000 $\pm 0.05\%$ Gold × 0.1 $\pm 5\%$ silver × 0.01 $\pm 10\%$ No band × 0.01 $\pm 20\%$ This resistance would be; 10 × 100 = 1000 Ω with a tolerance $\pm 5\%$ $R = 1000 Ω \pm 5\%$					++			
Violet 7 7 $\times 1000000$ $\pm 0.10\%$ Grey 8 8 $\times 10000000$ $\pm 0.05\%$ White 9 9 $\times 10000000$ $\pm 0.05\%$ Gold $\times 0.1$ $\pm 5\%$ $\pm 10\%$ Silver $\times 0.01$ $\pm 10\%$ $\pm 20\%$ No band This resistance would be; $10 \times 100 = 1000 \Omega$ with a tolerance $\pm 5\%$ $R = 1000 \Omega \pm 5\%$		Green	5	5	× 100000			
Grey 8 8 $\times 10000000$ White 9 9 $\times 100000000$ Gold $\times 0.1$ $\pm 5\%$ Silver $\times 0.01$ $\pm 10\%$ No band $\pm 20\%$ This resistance would be; $10 \times 100 = 1000 \Omega$ with a tolerance $\pm 5\%$ $R = 1000 \Omega \pm 5\%$		Blue	6	6	× 1 000 000	±0.25%		
White99 \times 1000000000Gold \times 0·1 \pm 5%Silver \times 0·01 \pm 10%No band \pm 20%This resistance would be;10 x 100 = 1000 Ω with a tolerance \pm 5% $R = 1000 \Omega \pm 5\%$		Violet	7	7	× 10000000	±0.10%		
Gold × 0·1 ±5% Silver × 0·01 ±10% No band ±20% This resistance would be; 10 x 100 = 1000 Ω with a tolerance ± 5% R = 1000 $\Omega \pm 5\%$		Grey	8	8	× 100000000	±0.05%		
Silver × 0·01 ±10% No band ±20% This resistance would be; $10 \times 100 = 1000 \Omega$ with a tolerance ± 5% $R = 1000 \Omega \pm 5\%$		White	9	9	× 1 000 000 000			
No band $\pm 20\%$ This resistance would be; $10 \times 100 = 1000 \Omega$ with a tolerance $\pm 5\%$ $R = 1000 \Omega \pm 5\%$								
This resistance would be; $10 \times 100 = 1000 \Omega$ with a tolerance ± 5% <u>R = 1000 \Omega ± 5%</u>					× 0·01			
$10 \times 100 = 1000 \Omega \text{ with a tolerance } \pm 5\%$ $R = 1000 \Omega \pm 5\%$		No band				±20%		
<u>R = 1000 Ω ± 5%</u>	-	-		This resista	ance would be	;		
				10 x 100 =	1000 Ω with a	tolerance ±	5%	
	ь	rown black	red gold	<u>R = 1000 C</u>	<u>2 ± 5%</u>			
								1

The tolerance is a percentage and is used minimum resistance value allowed for the what the tolerance is using the equation	nat resistor. The first step is to find out
i.e. Calculate a tolerance of 10% of a 20	0 Ω resistor: $\frac{200}{100}$ x 10 = 20Ω .
To calculate the maximum resistance of to the value. So: $200 + 20 = 220 \Omega$.	a resistor you would <u>ADD</u> the tolerance
To calculate the minimum resistance of a tolerance from the value. So: $200 - 20 = \frac{1}{2}$	
Input devices with their symbols which s	should be used when drawing them:
Non-Electrolytic Capacitor – –	Have NO positive or negative side. Usually have a low capacitance value.
Electrolytic Capacitor – – – – – – – – – – – – – – – – – – –	Have a positive and negative side. Usually have higher capacitance values.
Thermistor – (Temperature sensor)	As temperature increases the resistance decreases. Temperature Up Resistance Down - <u>TURD</u>
LDR – (Light dependent reisistor)	As light level increases the resistance decreases. Light Up Resistance Down - <u>LURD</u>
Output devices with their symbols which	n should be used when drawing them:
Motor – – – – – – – – – – – – – – – – – – –	Electrical energy to kinetic energy. Energy wasted as heat and sound.
Loudspeaker –	Electrical energy to sound energy. An analogue device.
LED– (Light emitting diode)	Electrical energy to light energy. Very little energy wasted as heat so LEDs are much more efficient than lamps.
Relay –	Used to allow a circuit with low current (safe) to control a circuit with high current (unsafe). When a current passes through the coil a magnetic field is produced. This closes the relay switch allowing the second circuit.
Buzzer –	Electrical energy to sound energy. A digital device.

	is used to allow electrical current to flow in one direction. It vill only conduct electrical current if it faces/points toward ne negative terminal of the battery.	
A continuity tester of connected to a pow continuity tester wo		
connected tThe LED work	o both ends of the wire or component that is being tested. uld light.	
A logic probe would test if the logic state	d work in the same way to a continuity tester but is used to e is a 1 or a 0.	
When soldering the	ere are safety measures which must be taken;	
 wear eye pr good ventila avoid breath 	ation	
	wo boards together spiral wrapping is used to protect the and spirals around the wires which are used.	
_	wo boards together it is important to identify the correct boards. This can be done by;	
colour codirnumbering t	-	
Multi-strand cables flexible and are not single strand cable broken more easily	was used it may be	
components which	ased for connecting electronic have lots of wires. This means they d at once and do not need to be ally.	
	used to send radio frequency sed when connecting sky TV.	
-	re used to send light signals. These TV and usually use laser light to	

Extra space for additional information